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Abstract— Service robots deployed in domestic environments
generally need the capability to deal with articulated objects
such as doors and drawers in order to fulll certain mobile
manipulation tasks. This however, requires, that the robots
are able to perceive the articulation models of such objects.
In this paper, we present an approach for detecting, tracking,
and learning articulation models for cabinet doors and drawers
without using arti cial markers. Our approach uses a highly
ef cient and sampling-based approach to rectangle detection
in depth images obtained from a self-developed active stereo
system. The robot can use the generative models learned for
the articulated objects to estimate their articulation type, their
current con guration, and to make predictions about possible
con gurations not observed before. We present experiments
carried out on real data obtained from our active stereo
system. The results demonstrate that our technique is able to
learn accurate articulation models. We furthermore provide a
detailed error analysis based on ground truth data obtained in
a motion capturing studio.

I. INTRODUCTION

Home environments are envisioned as one of the kee/

licati f . bots. Robot tinadh Ig. 1. Top: A drawer is opened and closed and observed wittleracs
application areas for service robots. Robots operaingan s ,mera in combination with projected texture. Bottom leftteAfplane

environments often have to deal with articulated objecthisu segmentation, we optimize iteratively the pose of a rectaagte evaluate

. . . these detections into a track, we t an articulation models.
addressed the problem of estimating and handling doors

Eg\?vs\:::,vzrrz [elfrlelﬂnt[ﬁl]y %ggewgzzogrtggzﬁn?gzrsﬁigifaccurate detection of rectangular objects in the depth émag
knowledge about the model and its parameters. Whereag - enees, see Fig. 1. We present a highly ef cient algorith

. - at segments the point clouds into planes, and then itera-
model-free approaches release designers from providing a{i\/ely ts rectangles to each plane separately. Our peroepti

ﬁ;pirrlorlrtrpoclietli n;for:natu:; ' th(renknowrledge about ?tbj,[ﬁCtd ‘;’mtalgorithm can be adapted to the computational capabilities
eIr articulation properties may greatly support the &talye o ohot as it allows to adjust the number of rectangle
estimation and the simulation, planning, and veri catioh o

the actions of the robot detections per frame. We furthermore track rectangles over
! ' . multiple frames. The individual tracks are then used torlear
Yhe articulation models. The learning approach insteggiat

lation models of doors and drawers from sequences of de Itiple candidate articulation models and selects the one

?mages acquired_ with an active stereo camera also pre_:s_en{ﬁ t best explains the data. Once a model has been selected,
in this paper. This approach has several advantages. |IlE|rstt e robot can use it to predict future con gurations of the
does not rely on arti cial markers attached to objects, an biects
second, we do not need to employ expensive range scanner%) N . . - .
X . ; ur implementation has been made available within Wil-
which have have the additional disadvantage that they poor| . . :
. . . X 4 ) low Garage's open source robotics repository WG-ROS-
deal with moving objects, making them inconvenient forpKG 23]
learning articulations. hi o 7ed as foll ter di ing rel
In our concrete scenario, the perception of articulated Tk'.s pﬁp?rllls organized as fo ows. After discussing relate
drawers and doors in a kitchen environment requires t orkin t € foflowing sec_:t|on,we.present our camera system,
the detection and tracking algorithm as well as the learning
1 Jirgen Sturm, Cyrill Stachniss and Wolfram Burgard are wite th @Pproach in S_eCt|_0n M. Flnally, n Sectlon IV we ?‘nalyze
Autonomous Intelligent Systems Lab, Computer Science Depatirii- — our approach in different experiments carried out with d rea
versity of Freiburg, Germanyf sturm, stachnis, burgard 9 robot in different environments. We furthermore evaluate o
@informatik.uni-freiburg.de . . .
2 Kurt Konolige is with Willow Garage Inc., Menlo Park, CA 94025 method based on ground-truth data obtained with a motion

USA. konolige@willowgarage.com capture system.
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Fig. 2. Our projector and stereo camera system. A pafefa projected g 3 Ppositional error of a planar target, observed with attive stereo

onto a surface to produde®, which is imaged by a left and right camera. system. For a white target, the error stays below 2mm untit 4f@m, then
To compute depth, the small red block in the left image is matclgathat  g5es up to about 1cm at 2.5m. For a very dark target, error islose up,
a range of blocks in the right image at the same vertical ofiseicated  {hen becomes larger at distance, when the pattern is diftcutiee.

by the outlined rectangle.
For this work, we evaluated several of the above ap-
proaches w.r.t. their applicability to the depth data froan o
A. Projected Texture Stereo active stereo camera system. We found that RANSAC-based
For our application, we require real-time (15 Hz), accuplane segmentation combined with iterative tting yielded
rate and dense point clouds of the scene. Flash ladars [Pp most robust and accurate results in our context.
often have poor depth and spatial resolution, and have noe— L ing Articulation Model
Gaussian error characteristics that are dif cult to deahwi = -amMing Articulation Models
Line stripe systems [8], [18] have the requisite resolution Yan and Pollefeys [29] present an approach for learning
but cannot achieve 15 Hz operation, nor deal with movinghe structure of an articulated object from feature trajees
objects. Monocular structured light systems [21] can aehie under af ne projections. Other researchers have addressed
reasonable frame rates and can sometimes deal with obj#e¢ problem of identifying different object parts from ineag
motion, but still rely on expensive and high-powered projecdata. Rost al. [19] use multi-body structure from motion
tion systems, while being sensitive to ambient illuminatio to extract links from an image sequence and then t an
and object re ectance. articulated model to these links using maximum likelihood
Stereo systems that employ matching algorithms to prdearning. There exist several approaches where tracking
duce dense results [6], [14], [27] can be a suitable sens@fticulated objects is the key motivation and often an afpri
for our application. However, passive stereo suffers from t model is assumed. Compat al. [7], for example, describe
problem ofdropouts areas of low texture cannot be matchecd framework for visual tracking of parametric non-rigid
correctly. An interesting and early technology is the use ghulti-body objects based on an a-priori model of the object
stereo with structured light [17], [16]. Unlike structurbght  including a general mechanical link description. Katzal.
systems with single cameras, stereo does not depend on k8] learn planar kinematic models for various articulated
relative geometry of the light pattern — the pattern justliien objects in 2D using a KLT tracker. The approach of Schulz
texture to the scene. Hence the pattern and projector can @eal. [22] utilizes prior knowledge about the position and
simpli ed, and standard stereo calibration techniqueslwan articulation parameters of doors to estimate their statiimvi
used to obtain accurate and dense 3D measurements. @ Bayesian ltering framework. Kragiet al. [15] describe
One variant of this technique, known as Spacetime Ster@® integrated navigation system for mobile robots which
(STS) [9], [31], varies the pattern over time and integrate#icludes a vision-based system for the detection of door
several frames. It produces outstanding results on stafi@ndles that enables the robot to successfully open doors.
scenes and under controlled illumination conditions, bubnguelovet al.[4] model doors as line segments that rotate
moving objects create dif culties [31], [28], [25]. around a hinge. EM is then used to nd the model parameters
We have developed a compact projector for active sterdwth from 2D range data and images.
with a xed, random pattern. It provides a texture for stereo In our previous work [24], we learned articulation models
that produces excellent error characteristics at distange for various objects in full 3D using arti cial markers. Inith
to 3 meters, even for surfaces with low re ectivity, see Fig. paper, we present an extension of our previous approach, tha

Il. RELATED WORK

and Fig. 3. allows us to observe object parts in 3D directly from depth
) images and thus learn the models without requiring artl cia
B. Model-based Detection markers. We regard this is as an essential requirement for

Locating objects from 2D images has a long history imeal-world applications.
computer vision research [5]. Recent approaches for door
detection from camera images include [1] and [3]. For . A PPROACH
3D point clouds, Hough transforms [26], EM-based algo- In this section, we rst briey describe the structured
rithms [30] and RANSAC-based approaches [20] have bedight approach to obtain dense depth images from stereo. We
used successfully for line and plane tting. then present our sampling-based rectangle detector fot poi



occluded pixels (hand) unknown pixels (window) correct recognition

Fig. 4. Finding the tree most prominent planes with our RANS#Ged Fig. 5.  Effect of the cost parameter for unknown and occlude@!gi
approach. Left: cost too high (1.0). Middle: cost too low (0.0). Riglyood (0.2).

clouds before we illustrate how the individual observagionsingle matrix multiplication from the pixel coordinatesdan
can be combined into consistent tracks. Finally, we showisparity.
how articulation models can be learned from such tracks.

B. Model-based Perception from Depth Images

A. Dense Depth Images from Stereo and Projected Texture ] ]
1) Sampling planes:Our RANSAC-based plane tting

We consider a projector and a stand_arq calibrated St?rﬁ%orithm samples three pixels from the depth image, com-
camera con gured_ to _b_e as nearly coincident as pQSS|b|§JteS from them a plane with coef cientgane 2 R?, and
(see Fig. 2). For simplicity, the focal length of the prof@ct hen counts the inliers of that plane. We de ne the plane to

and camera are similar, so that at any distance the projectgginprise all pixels that are within a certain distadcef the
pattern appears to be the same size in the camera imag&ane i.e., for which the following holds:

A compact, high-power LED device projects a xed pattern
P as a random grid of black and white squares, in sync kZpandX y z )Tk d: 1)
with the camera exposure. When it is seen by a camera,
the pattern produces an image. We use a standard blogk- general,d depends on the particular noise level of the
matching algorithm to compute the disparity of each pixetamera — in our case, we usdd= 0:02m. We repeat this
[14], that is, the offset between the left and right imagesprocess of plane candidate generation until we nd a plane
The algorithm runs at 15 Hz for 640x480 at 128 disparitiegith a high enough support, or we exceed a given number
on a single 2 GHz Pentium core. of iterations. We select the plane with the most inliers
We tested the device with a 50 deg eld of view, using bottand subtract the corresponding inliers from the point cloud
white and 5% re ectance black planar targets at differensubsequently, we apply the same strategy to the remaining
distances. The error is taken to be the standard deviatom fr points in the cloud, until no more points remain.
the best-t plane. From Fig. 3, the system shows very low Fgor each plane, we create an image magk 2
error, even out to 2.5m. For the white target, the error staysn-plang free occludedunknowrg®®® 480 with labels for
below 1 cm throughout this range. Some of the error at th@e pixels in the depth image, i.e.,

larger distances comes from calibration, as the recortstiuc 8

plane will not be perfectly at. Up to over 1 m, the error is 3 in-plane  if KkzpandX Yy Z DTk d
about 2 mm, which is good enough to reconstruct even n (U:v) = free if ZpandX Yy z 1)T >d
objects. Even with a very dark (5% re ectance) target, the ' occluded if Zpandxyz 1)T < d
system gives good results up to 2m, with some increase in " unknown otherwise

error at the larger distance. (2

An issue with very dark targets is that the block-matching Here, “in-plane” indicates that the pixel belongs to the
(correlation) response becomes less reliable, as all slocRlane for which the masiM is computed. In contrast to
match equally well. We use an ambiguity test to lterthat, “free” indicates that the observed pixel lies behine t
unreliable matches: the ratio between the lowest and 2nglane and “occluded” that a pixel in front of the plane has
lowest correlation for a given block in the left image to itsbeen obsersevd which occludes the plane. “Unknown” means
candidate correspondents in the right image. Experimigntalthat no depth information is available for that pixel.
we determined a threshold for this ratio that excludes most In contrast to typical approaches to RANSAC-based plane
bad matches. For the white target, every pixel made thiffing which always assign pixels to one plane, our masks
cutoff. For the dark target, Itered pixels start to occur atallow points to belong to several planes at the same time.
1.2m, and increase linearly to 2.5 m, when there are no pixelis is useful, as the in nite planes determined via RANSAC
that make the cutoff. always intersect with the subsequent (less signi canthet

From our stereo processing system, we obtain in eadhereby cutting out points that make detection of contiguou
frame a disparity imag® 2 R% 480 that contains for rectangles more dif cult in the next step of the perception
each pixel(u;v) its perceived disparity (u;v) 2 R. The process.
relationship between 2D pixels in the disparity image and For a visualization of the result, see Fig. 4. In this example
3D world points is de ned by the projection matrices ofour algorithm automatically segmented three planes from a
the calibrated stereo camera, and can be calculated bydepth image of a cabinet door.



Fig. 6. In each plane, we pick a random starting point fromclvhive  Fig. 7. As our model tting procedure is greedy, it can get trag@ into
optimize iterative the pose and size of the candidate ref#ahgthis case, local maxima. We deal with this problem by starting from mutigtarting
the found rectangle is accepted because batky andr pecision @are high  points. In this case, we reject the found rectangle beceusg is too low.
enough (see text).

_ _ the found rectangle. Second, we evaluate the regall| as
~ 2) Sampling rectanglesThe next step is to nd rectangles the ratio of pixels in the found rectangle versus the pixels
in the segmented planes. A rectangle in 3D space hg$ the selected plangpane For both measures, we used

8 degrees a freedom: its position, its orientation and it§yr cost functions to weight occluded and unknown pixels
dimensions (3+3+2). After the plane segmentation, we havgcordingly.

already xed 3 DOFs, so that we need to nd the remaining
5 DOFs. We apply an iterative tting approach here. We start

[=]
1 cos(M (u;v))

r il Z = pixelqz[ec_‘) _ 4
with a sampled candidate rectangle and optimize its pose and precsio Zrecd) P 'p'x‘i's(zz;'z'M ) “)
size iteratively using an objective functian Frecal(Zrec) = B :xe:zpr.:: T cos(M (uv) %)

For creating an initial rectangle candidate, we sample a

random point from the plane, and sample the other DORsmpirically, we found that a good condition for threshofglin

from a prior distribution. The objective functianis based on s to require that both ratios are abo®, which removes
the average cost of the pixels inside the rectaagle2 R®,  most of false positives.

1 X An example of the iterative pose tting is given in Fig. 6:
9(Zrect) = ipixelZre)i ™ cos(M (u:v)) (3)  the rectangle candidate started in the lower left of the door
Pixels(Zrec) and iteratively converged to the correct pose and size of the
The parameter (that we empirically chose around =  door. The candidate is accepted, because both ngi@sion
0:05) makesg slightly favor larger rectangles over smallerandr ecai have high values. The greedy search however can
ones. get stuck in local maxima. In the example depicted in Fig. 7,

Finding a good cost metric cost, in particular for occludedhe hand is also part of the drawer front plane and the
and unknown pixels, is non-trivial. If chosen too low, thecandidate rectangle converged to a rectangle that ts toesom
greedy search converges on too large rectangles, while a @end the hand. Our algorithm then rejects this candidate
high cost increases the amount of local maximagiand in  rectangle because it does not contain the majority of pixels
turn leads to the detection of partial rectangles in thegares  in the plane, i.e.[recal takes a low value.
of occlusions (see Fig. 5). We deal with the problem of local maxima by starting from

In each iteration, we now individually optimize every DOFseveral rectangle candidates. In this sense, our algorithm
of the rectangle. We apply a small set of discrete changés probabilistically complete, as we would nd any visible
to each DOF, and evaluate the objective functionzfg,. If  rectangle in the limit with probability 1. In practice, wease
9(z%.) > 9 (Zree), We continue with the improved parametera xed numberm of samples per plane.
set. When this greedy search converges (or we reach thein an early implementation, we approached the problem
maximum number of iterations), we need to evaluate thesing a hierarchical model-based approach from computer
quality of the found match. In preliminary experimentsyision. We looked for edges in the plane mabk of
we found that the value of the objective function was nothe depth image using the Canny operator, then extracted
suf cient for discrimination of false and true positives. line segments using the probabilistic Hough transform, and

Therefore, we decided to evaluate the rectangle candidatembined neighboring perpendicular line segments to corne
Zrect USINg two measures, that are inspired from statisticalandidates. Unfortunately, the projected texture leads to
classi cation theory and that have a natural interpretatio very fringed edges, so that line extraction is unstable; as
First, we evaluate the precisionyecision Of the rectangle a consequence, perpendicular line segments are rare, and in
candidate as the ratio of detected pixels and all pixels imany cases no candidates can be created.



Fig. 8. Observed tracks of a cabinet drawer (left) and a etldioor (right). Fig. 9. Left: Articulation model learned from observing awes Right:
Same for a door.

As an alternative to the objective function described in
Eq. 3, we evaluated only the contour of the rectangle in . ; :
the distance transform of the edge image. This techniqueff%_rkth'S tr_ack, we have a sequence Iofn_0|sy observations
called chamfer matching and has been used successfullyzih _acquwed bY Fhe tracke.r. Eaph candidate template model
compuiter vision for template-based model matching. In oUt2S 'S OWn training or estimation procedure from the track
case, where we have additional uncertainty of the size of tl%)servatmnsz . For example, for a rotational joint model,

rectangle, we found that the greedy search was very proij\{? hnee(;j to'lestlmatef thi rotaﬂgn aX|3221nd the radius. For
to local maxima during the optimization. urther details, we refer the reader to [24].
2) Evaluating a Model:Besides training each model tem-

C. Tracking plate, we need to evaluate its performance to subsequently

. . . select the model that explains the data best.
In the remainder of this paper, we drop the subscrip : : o
. _ . A Let M be the articulation model describing the observa-
in Ziect = Z to improve readability. The rectangle detector,

ot~ ) o tionsD = zVk = z%;:::;Z% of a trackt. To evaluate how
described in the previous section gives us per frame between . : .

: well a single observation can be explained by a model, we
zero andn m observations of rectanglesn( rectangles :
: ! : . : ave to determine
in n planes), which need to be integrated into consisten z
tracks. Checking whether two rectangles and z; are p(zjM )= p(zjg;M) p(gjM ) dq: (6)
similar requires to take the ambiguity in the representatio q
into account: the same rectangle can be described by eighder the assumption that no latent con guration stgis
different parameter vectors (depending on the choice of thfiore likely than another one, this simpli es to
corner of origin, and the choice of the front or back side z

Let us consider a track. To train the candidate models

of the rectangle). A track is an integrated sequence lof pzjM)= p(zjq;M) da: @)
rectangle observations-* = z%;:::;z¥ that were collected
until time t. To evaluatep(z j q;M ), that is, a measure for how well

In our implementation, we check whether a new obsemmodelM parameterized by explains the observatian we
vation z"" (under consideration of the above-mentionedrst compute the expected transform
ambiguities) is close to an existing tratk Then it is either :
guities) g tratk 2= Ey[zjd=fu (d ®)
track is initializedt 't := zK*1. For deciding whether a dis- using a model-speci ¢ transformation functidi (z) that
ambiguated observation is close enough to an existing trackomputes the expected pose of the object giyefhe trans-
we used xed thresholds on pose change and considered afsomation functions for all template models are described
the uncertainty in the estimate of the object size. in [24]. Under a Gaussian error assumption, the observation
likelihood then becomes

. . o o

Our approach for learning models of articulated objects PzjaM) 7 exp jj 2 z] ©
aims at estimating the kinematic nature of the observedtdracand nally, we can compute Ythe marginal data likelihood as
of objects in the scene and consists of the following parts: . _ . )

1) Training Template Models for the Observed Tracks of PDIM )= p(ziM): (10)
Object Parts: Since we have no prior information about the ) . 220 ]
nature of the connection between object parts, we do not aim3) Model SelectionWith the above mentioned approach,
to tasingle model, butinstead t a set of candidate templat W& can estimate for each track a set of actuation models
models representing different kinds of links. This cantida M flgid; M Prismatie; \p rortional and the corresponding observa-

set consists of parameterized models that occur in varioli€n likelihood using Eq. 10. . _
objects including a rotational linkM 2" 4 prismatic For selecting the model, we assign to each learned artic-

link (M Prismatig “and a rigid transformationM "99). All ulation model a cost that is equal to the negative expected
models excepM 99 have a latent variablg that describes data log-likelihood plus a complexity penalty of the model:

the con guration of the link. For a door, the variabigfor 1 Cr typ typey .
example describes the opening angle of the door. KDk logp(DjM %)+ C(M ¥ (11)

D. Learning Models of Articulated Objects

COSHy type =
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Then, we select for eaCh tr_aCk '_ndIVIdua”y the mOde_I thalléig. 11. Evaluation of the detector using ground truth dedenfthe motion
has the lowest cost. This articulation model then explaies t capturing studio. Top: Detection rate and number of planas ikeded to
data of the observed track best while considering at the sarbgesearched to nd the drawer. Bottom: Accuracy of the posinese.

time also the model complexity.
58 cm) and a drawer (39.5cm 12.5 cm) of a typical

kitchen interior that were repeatedly opened and closed. We
A. Recognition Capabilities recorded a total of 1,023 and 5,202 images. From these logs,

To evaluate the performance of our sampling-based pete sampled uniformly around 100 images for 50 times, and
Ception approach, we obtained ground truth pose informatigan our detector and tracker as described in Sec. lll on each
from a motion capturing studio. Tracking LEDs were adde®f these 50 down-sampled log les. For the resulting tracks,
to an unmounted drawer, and a log le containing 19,418ve trained the three articulation models and evaluated the
stereo images including pose information was recordedrundeutcome of the model selection process (see Fig. 12 (top)).
a large variety of different poses (see Fig. 10). For both datasets, we found that roughly for the rst 10

As a rst result, we found that the drawer was correctlyobservations, mostly the rigid model was selected, as ne sub
detected in more than 75% of the images up to a distan&éantial motion of the drawer or door was yet detected. The
of 2.3m from the camera (see Fig. 11 (top)). We also founfnore observations are added to the track, the higher the erro
that the number of signi cant planes identi ed via RANSAC between the (rigid) model predictions and the observations
that need to be searched increases almost linearly with thecomes. As a result, the prismatic and rotational models
distance from the camera. This is an expected result singée selected more frequently. After 30 observations, model
the drawer appears smaller in the depth image the furtherSelection has converged in all cases to the true model. For
is away. the drawer model we reach a predictive accuracy of 1cm

The average position error of the estimator was on averag@d 7 deg; for the door we measured a predictive accuracy
below 1.5 cm. It also was almost independent of the actu@f 1cm and 3.5deg (see Fig. 12 (bottom)). Model tting
distance to the camera. The same holds for the orientatiéfid selection takes on average 7 ms, and thus can be easily
error, that was on average below 3 deg (see Fig. 11 (bottom§pmputed in real-time on a mobile robot.

In comparison with our previous results [24], the accuracy
of our sampling-based perception on active stereo images is
approximately ve times higher than with the marker-based In this paper, we presented an approach for learning artic-
tracking system [11]. ulation models for doors and drawers without requiring-arti

In our current, un-optimized implementation, the p|anecial markers. Instead, our approach detects and trackssdoo
extraction takes on average 845ms on a single 2 GHnd drawers in depth images obtained from a self-developed
Pentium core. Creating the image mask of each plane tak&ireo camera system with structured light. It employs a
approximately 8ms. Sampling a rectangle candidate frofighly ef cient approach to detect and track rectangles in
the mask takes 10 ms, optimizing the pose around 313 nfigquences of depth images and uses the resulting tracks
and nally checking the precision and recall of the candédat {0 learn accurate articulation models for the correspandin
consumes another 2.3 ms. objects. We evaluated our algorithm in extensive experimen

Furthermore, we validated our approach on |arge numbé"SO including ground truth data. The results demonstrate
of different doors and drawers in two different kitchenss@|  that our method is able to achieve high recognition rates and
we successfully tested the detector on a small of ce petlest@ccuracy.
with three drawers of different size, a fuse door and a re
extinguisher door in the wall.

IV. EXPERIMENTS

V. CONCLUSION
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