Pairwise Markov Logic

Daan Fierens', Kristian Kersting?3, Jesse Davis!, Jian Chen'!, and Martin
Mladenov?

! Dept. of Computer Science, KULeuven, Belgium
fierens.daan@gmail.com
jesse.davis@cs.kuleuven.be
2 Fraunhofer TAIS, Germany
kristian.kersting@iais.fraunhofer.de
3 University of Bonn, Germany
mladenov@igg.uni-bonn.de

Abstract. For many tasks in fields like computer vision, computational
biology and information extraction, popular probabilistic inference meth-
ods have been devised mainly for propositional models that contain only
unary and pairwise clique potentials. In contrast, statistical relational
approaches typically do not restrict a model’s representational power
and use high-order potentials to capture the rich structure of relational
domains. This paper aims to bring both worlds closer together.

We introduce pairwise Markov Logic, a subset of Markov Logic where
each formula contains at most two atoms. We show that every non-
pairwise Markov Logic Network (MLN) can be transformed or ‘reduced’
to a pairwise MLN. Thus, existing, highly efficient probabilistic inference
methods can be employed for pairwise MLNs without the overhead of
devising or implementing high-order variants. Experiments on two rela-
tional datasets confirm the usefulness of this reduction approach.

1 Introduction

In the probabilistic graphical models literature, many inference algorithms have
been designed specifically for low-order models. The term order is used here
in the probabilistic sense (as opposed to the logical sense of ‘first-order’ logic).
Concretely, the order of a factor graph is defined as the maximum number of
arguments of a factor [1]; the order of a Markov Random Field (MRF) is the
size of the largest clique. A probabilistic model is called pairwise if its order is
(at most) two.

Pairwise graphical models first became popular in the field of statistical
physics and are nowadays used for many applications, in diverse fields like com-
puter vision, computational biology and information extraction [1]. The typical
‘pairwise approach’ is to write a probabilistic model with unary and pairwise
clique potentials, understand the Bayesian priors it incorporates, and then per-
form inference [2]. This is especially common in the case of MAP inference. MAP
is the task of, given the observed state of some random variables, finding the

most likely state of all other random variables occurring in the model.* Many
state-of-the-art methods for MAP inference were mainly developed for pairwise
models. High-order variants of such methods (capable of handling non-pairwise
models) often do not exist and if they do, they are typically more complex and
lack implementations. This is particularly true for MAP methods based on Lin-
ear Programming [3], Quadratic Programming [4], graph cuts [5, 6], etc. While
most of these methods can in principle work on non-pairwise models, pairwise
models receive the most attention because this facilitates implementation and
theoretical analysis (e.g., convergence analysis for iterative methods like belief
propagation [3]). Table 1 provides an overview of some inference methods and
their ability to handle non-pairwise models.

Table 1. An (incomplete) overview of MAP inference methods and their support for
non-pairwise models.

Method Supports non-pairwise models
Max Product Variable Elimination v
Max Product Belief Propagation v

Linear programming methods [3] v/—
Graph cut methods [6] (QPBO [5], ...) -
Quadratic programming [4] —

In statistical relational learning (SRL), the situation is different. Typical SRL
approaches, like Markov Logic [7], do not restrict a model’s representational
power and use high-order potentials to capture the rich structure of relational
domains. The notion of pairwise models has so far not been considered in the
SRL literature. With this paper, we aim to bridge this gap between SRL and
probabilistic graphical models. To this end, we introduce pairwise Markov logic.
We show that any high-order Markov logic network can be reduced to a model
in pairwise Markov logic, where we can then bring to bear the powerful inference
techniques for low-order models. Section 3 explains the reduction for proposi-
tional MLNs and Section 4 explains the lifted reduction for first-order MLNSs.
Section 5 empirically demonstrates the utilty of the reduction approach for both
ground and lifted inference on some common relational datasets.

2 Pairwise Markov Logic

A Markov Logic Network (MLN) is a set of pairs (¢;, w;), where ¢; is a formula
in first-order logic and w; a real-valued weight. Following the propositional case,

4 This is sometimes also called MPE (Most Probable Ezplanation) inference, or full
MAP inference (to distinguish it from partial MAP, in which some of the random
variables need to be summed out).

we define the order of an MLN as the maximum number of atoms in a formula,
i.e., the maximum ‘length’ of a formula in the MLN. We call an MLN (or a single
MLN formula) pagrwise if its order is two. For instance, the formula Smokes(z) =
Asthma(z) is pairwise, but Friends(z,y) = (Smokes(x) < Smokes(y)) is not.
We call the latter a triplewise formula since it has length three.

Pairwise MLNs have advantages for both ground and lifted inference. Ground
inference typically applies methods from the graphical models literature, many
of which focus on pairwise models. A similar argument holds for lifted inference,
where some recent work uses graph-theoretical notions that assume that the
network is pairwise [8] (as it can then be represented as a simple graph rather
than a hypergraph).

Despite the advantages of pairwise MLNs, one should not discard non-pairwise
MLNSs. It is difficult, if not impossible, to capture the rich structure of many rela-
tional domains using a pairwise model. For example, when performing structure
learning, restricting the hypothesis space to pairwise MLNs would simply ignore
too many relevant patterns in relational datasets. Many typical relational pat-
terns require triplewise formulas. Common examples are found in collective clas-
sification (e.g., Class(x,c) A Link(z,y) = Class(y,c)), in link prediction (e.g.,
Property(z) A Property(y) = Link(z,y)), in social networks (e.g., the above
Smokes formula), etc.

In summary: we would like to use non-pairwise MLNs during modelling and
learning but use only pairwise MLNs during inference. In the graphical models
literature, this apparent contradiction is typically solved by reducing the non-
pairwise model to an equivalent pairwise model when performing inference. In
this paper we (for the first time) show that this can also be done for Markov
Logic: any MLN can be reduced to a pairwise MLN.

3 Reduction for Propositional MLNs

A propositional MLN is a set of pairs (¢;,w;) where ; is a propositional logic
formula (using connectives 1, A, V, = and <) and w; € R. A propositional MLN
defines a probability distribution on the set of possible worlds (interpretations):
the probability of a world w is P(w) = Zexp(>; w;id;(w)), with Z a normalization
constant and d;(w) the indicator function being 1 if formula ¢; is true in world

w and 0 otherwise.

Below we show how to reduce a given propositional non-pairwise MLN to a
pairwise MLN. In graphical models, reduction is typically done by converting
the model (or its energy function) to a pseudo-Boolean function or multi-linear
polynomial [1]. While our reduction for propositional MLNs can also be phrased
in this terminology, we instead chose for a more self-contained formulation, re-
ferring only to Markov Logic. This will allow us to extend our approach from
propositional MLNSs to first-order MLNs (lifted reduction, Section 4).

3.1 Outline of the reduction algorithm

The reduction is done by means of a rewriting process that modifies the MLN
knowledge base, i.e., the set of weighted formulas. This is a two-step process.
The first step is an enabling step that brings the MLN into a certain normal
form. The second step does the actual reduction to pairwise form.

Algorithm 1 provides an outline of the procedure, which we explain in detail
in the following sections. We will also discuss in what sense the obtained pairwise
MLN is ‘equivalent’ to the original MLN. To simplify the discussion, we first
show how to reduce triplewise MLNs (i.e., with maximum formula length 3).
Section 3.5 explains how to reduce MLNs with order higher than 3.

3.2 Step 1: write triplewise formulas in positive normal form (PNF)

Since we for now only consider triplewise MLNs, each formula in the MLN is
either triplewise, pairwise or unary. The goal of Step 1 is to bring all triplewise
formulas into what we call positive normal form.® This will simplify the actual
reduction to pairwise form in Step 2. A formula is in positive normal form or
PNF if it is a conjunction of atoms (not involving negation), e.g., PA Q A R.
Step 1 loops over all weighted formulas (p,w) in the given MLN M. If ¢ is
triplewise and not in PNF, we execute an atomic rewriting step on .
Atomic rewriting step. An atomic rewriting step executed on a non-PNF
triplewise formula ¢ with weight w removes ¢ from the MLN and replaces it
by a set of equivalent PNF formulas. In Algorithm 1la, this is denoted by the
line M := M U RewriteToPNF (p,w) \ {(p,w)}. To do so, we call the function
Rewrite ToOPNF (p, w) (see Algorithm 1b) which returns an equivalent set of seven
weighted PNF formulas that we add in place of ¢ in the MLN. The equations for
the weights of these formulas, w; to w7, depend on the truth table of ¢, which
is denoted v_ in Algorithm 1b. Concretely, let P, Q and R be the atoms in ¢,
then v,q, denotes the Boolean truth value (1 or 0) of ¢ under the interpretation
P =p, Q= qand R =r. For instance, vy is the truth value of ¢ when P and
@ are true and R is false. In general the output of RewriteToPNF() consists of
seven formulas, but in practice it is often the case that the weights of some of
these formulas equal zero, so they can be omitted.
Example. Consider the triplewise non-PNF formula P A Q = R with weight
w. This formula is satisfied unless P and @ are true and R is false. Hence, the
truth table of this formula is: vy equals 0, all other v, ’s equal 1. Applying the
function RewriteToPNF () to this formula, we get an equivalent set of two PNF
formulas. The first formula is P A Q A R with weight w (since wy = w(1 — 0 —
141-14141—-1)=w). The second formula is P A @ with weight —w (since
wy =w(0—1—141) = —w). The five other formulas get weight zero and hence
can be omitted.
Equivalence of MLNs. Let M, be the original MLN with triplewise formulas
and M; be the MLN obtained after applying Step 1 to My. My and M; are

5 Our use of the term positive normal form is unrelated to its use in other fields.

Algorithm 1 The algorithm for reducing a triplewise MLN: 1a) outer loop,
1b) Step 1, writing to positive normal form or ‘PNF’, 1¢) Step 2, reduction to
pairwise form.

Lines in gray do not apply to the propositional reduction but only to the lifted
reduction for first-order MLNs.

procedure Reduce MLN (M)
in: a triplewise MLN M

// Step 1: rewrite to PNF
for each triplewise weighted formula (, w) € M that is not in PNF

la) M := M U RewriteToPNF (o, w) \ {(p,w)} // an atomic rewriting step
// Step 2: reduce to pairwise
for each triplewise weighted (PNF) formula (¢, w) € M
M := M U ReduceToPairwise(p, w) \ {(¢p,w)} // an atomic reduction step
function RewriteToPNF (p,w)
in: a triplewise formula ¢ with weight w
let P, @ and R denote the atoms in ¢
let v... denote the truth table of ¢ (see text)
return { (w1, PAQAR), (w2, PAQ), (w3, PAR),
(w47Q/\R)7 ('LU5,P), (w6aQ)7 (w77R) }
with
1b) w1 = W(Vsr — Vg — Vipt + Ve — Ve + Vpg + Ve — Uy)
w2 = w(vuy — Vi — vy + Vgiy)
w3 = w(vir — vigr — Vg + V)
wy = w(vpe — vy = Vg + Vgr)
ws = w(vig — vgy)
we = w(vpy — vgr)
wr = w(vge — vgy)
For the 2nd up to 7th formula (formulas with weights wo, ..., wr):
multiply the weight with a correction factor for lost logvars (see text)
function ReduceToPairwise(p,w)
in: a triplewise PNF formula ¢ of the form P A Q A R with weight w
Introduce a new auxiliary atom A Logvars of A:
union of all logvars in P, @ and R
ifw>0
le) return { (w,AAP), (w,AANQ), (w,AAR), (—2w,A)}
else

return { (w,PAQ), (w,PAR), (w,QAR),
(—w,ANP), (—w,ANQ), (—w,AANR), (w,A)}

For the first three formulas (P A Q, P A R and Q A R):
multiply the weight with a correction factor for lost logvars (see text)

equivalent in the sense that they determine the same probability distribution
over possible worlds. To prove this, we show that executing one atomic rewriting
step preserves the distribution of the MLN. As Step 1 is just a sequence of atomic
rewriting steps, it follows by transitivity of equality that M; is equivalent to M.

Recall that the probability of a world w is P(w) = Lexp(}, w;é;(w)) where
>, wid;(w) is the sum of weights of satisfied formulas in the world w and Z is
the normalization constant, i.e., Z =Y exp(>_, w;d;(w)). Hence, any rewriting
step that leaves the sum of weights of satisfied formulas or SWSF of every world
unchanged, preserves the distribution of the MLN. In fact, this is also the case
if the rewriting step adds a constant number to the SWSF of every world, since
this constant will disappear into the normalization constant, i.e., the resulting
MLN will have a different normalization constant but will still define the same
distribution over possible worlds.

An atomic rewriting step only has a local effect: it replaces one triplewise
non-PNF formula ¢, involving only three atoms P, () and R, by a set of at most
seven new formulas involving P, @ and R. Because of this locality, the SWSF of
each world remains largely unchanged under an atomic rewriting step: we only
need to show that the contribution of the seven new formulas to the SWSF in
each world is the same (up to a constant) as the contribution of . This can be
seen from the following table over the possible worlds of P, @) and R.

PQR © new formulas
ttt W Vgt w(vttt — vﬁf)
tt f W Vg w(veg — Vgy)
t £t W Uy w(v — V)
t ff W Vg w(vgg — vy)
ftt W Ve w(vpe — vgy)
fef w iy w(vpy — vgy)
fft w Vg w(vg — vgy)
fff w vy w(vgr — vgy)

This table is read as follows. The first three columns determine the possible
world (‘t” is true, ‘” is false). The fourth column gives the contribution of the
original formula ¢ to the SWSF for that world, which by definition is the weight
w multiplied by either 1 or 0, depending on the truth value v of ¢ in the
considered world. The last column gives the summed contribution of the seven
new formulas to the SWSF, this can be calculated from the equations given in
Algorithm 1b. Let us illustrate this for the first row in the table, i.e., for possible
world in which P, @ and R are all true. In this world, one can verify that all
seven new formulas are satisfied. Hence the contribution of these formulas to
the SWSF is the sum of their weights, 21'721 w;. Calculating this sum using the
equalities in Algorithm 1b, and simplifying the resulting expression, we obtain
w(vge — vgr), as indicated in the first row of the table. In the same way, the
reader can verify the other rows in the table.

As the table shows, the contribution to the SWSF of the seven new formulas
is the same as that of ¢, up to a constant (namely —w vgy). Hence, although the
normalization constant is different, the distribution of the MLN is preserved.®

3.3 Step 2: reduce triplewise formulas to pairwise form

Step 2, shown in Algorithm 1la, reduces all triplewise formulas in the MLN to
pairwise form. It loops over all formulas in the MLN. When encountering a
triplewise formula ¢, we execute an atomic reduction step on (.

Atomic reduction step. An atomic reduction step executed on a triplewise
PNF formula ¢ with weigth w removes ¢ from the MLN and replaces it by
an equivalent set of pairwise (or unary) formulas. To find this set, we call
ReduceToPairwise(p,w), as defined in Algorithm lc. If w is positive, this re-
turns four formulas; if w is negative, seven formulas are needed.

The key part of the reduction is that we introduce an auziliary atom (auz-

atom) into the vocabulary. This is analogous to an auxiliary random variable
from the traditional reduction in the graphical models literature [1]. In the func-
tion ReduceToPairwise(), this aux-atom is denoted A.
Example. We continue our previous example. After Step 1, we had an MLN
with a triplewise formula P A @ A R with weight w, and a pairwise formula
P A Q with weight —w. In Step 2, the pairwise formula is left unchanged, while
(assuming w > 0) the triplewise formula is replaced by its equivalent set of four
pairwise or unary formulas, as given by Algorithm 1lc. The end result is hence
a set a five formulas: the pairwise formula P A QQ with weight —w, the pairwise
formulas AA P, ANQ and A A R each with weight w, and the unary formula A
with weight —2w.

One important technicality that is not illustrated by this small example is
that, for the reduction to be correct, we need to introduce a separate aux-atom
(i.e., with a new, unique name) for every triplewise formula being reduced. For
instance, for the i-th triplewise formula, we can introduce an aux-atom named
A;.

3.4 Equivalence of the reduced MLN (max-equivalence)

Let us call the original MLN My, the MLN obtained after Step 1 M7, and the
MLN after Step 2 Ms. Let Py, P, and P, denote the probability distributions
specified by respectively My, M; and Ms.

We have already shown (Section 3.2) that M; is equivalent to My. Now the
question is: how does Ms relate to My and M;? Because Step 2 introduced aux-
atoms, M defines a probability distribution over possible worlds described in
terms of a larger vocabulary than My and M;. We show below that M is maz-
equivalent to My and My, i.e., when mazxing-out all aux-atoms from the prob-
ability distribution of Ms, the obtained distribution is the same as that of M

5 We could add the trivial formula true (which is satisfied in all worlds) with weight
w vgr in order to also make the normalization constants equal. However, from the
perspective of equality of distributions, there is no need to do this.

and M;. Maxing-out an atom (or random variable), as used in all max-product
algorithms in graphical models, is the counterpart of summing-out (marginal-
ization).

Example (maxing-out). In our running example, the MLN Ms obtained after
Step 2 contains the atoms A, P, @, and R and hence defines a distribution
Py(A, P,Q, R) over 2*=16 possible worlds. Maxing-out A from this distribution
yields a distribution Py(P, @, R) over 8 possible worlds, where each ‘entry’ of the
distribution Pj() is defined as the maximum of the two corresponding entries of
the distribution Pz(). Concretely, Va, p,q,r € {true, false} :

Py(P=p,Q=q,R=r)
def max(Py(A = true,P =p,Q =¢,R=r),P,(A=false, P =p,Q =q,R =r)).

We write this more concisely as:

P2/(P7Q7R) d:Ef maxAPQ(A7P7Q7R)'

Example (max-equivalence). The MLNs Mj and M; for our running example
define a distribution Py(P, @, R) = P (P, Q, R). Max-equivalence means:

maZ'APQ(A,P,Q7R) = Pl(P7QaR) = PO(PaQaR)

As mentioned before, the example illustrates a simple case with only one triple-
wise formula in the original MLN, and hence one aux-atom. In general, mul-
tiple aux-atoms are needed (one per triplewise formula). In such cases, max-
equivalence is satisfied after successively maxing-out all aux-atoms.

Before we prove that max-equivalence indeed holds, we first clarify why max-
equivalence is meaningful.
Inference on the reduced MLN. As mentioned in the introduction, pairwise
reductions are mostly used for MAP inference. This is the task of, given the
observed truth value of some atoms in the MLN, finding the most likely truth
value of all others atoms (the MAP solution). Given a non-pairwise MLN M,
there are two possible approaches. The direct approach runs MAP inference on
M. The pairwise approach first reduces M to pairwise form and then applies
MAP inference. This approach returns the most likely truth value for all non-
observed atoms in M, as well as for all aux-atoms. The aux-atoms’ truth values
can simply be discarded as they are not part of the original inference task. Max-
equivalence implies that the pairwise approach returns the same MAP solution
as the direct approach (assuming we perform ezact MAP inference and that M
has a single MAP optimum). This is because MAP inferences maximizes over
all non-observed atoms including the aux-atoms, and maximizing over all aux-
atoms is exactly what the notion of max-equivalence assumes. This explains why
max-equivalence is useful in the context of MAP inference.
Proof of max-equivalence. For any given (propositional triplewise) MLN
My it holds that the MLN M, obtained after Step 2 of our reduction is max-
equivalent to M. Step 2 repeatedly applies atomic reduction steps. Each step

introduces a separate aux-atom, which is independent of any previous aux-atoms.
Hence, maxing-out one aux-atom does not influence maxing-out any other aux-
atom. Thus, to show that max-equivalence holds, it suffices to show that a single
atomic reduction step applied to some MLN leads to a max-equivalent MLN.
We show this below.

Each atomic reduction step takes a triplewise PNF formula P A Q A R with
weight w and replaces it by a set of four (if w > 0) or seven (if w < 0) pairwise
or unary formulas. As we did for Step 1, we will again focus on the contribution
of the involved formulas to the SWSF of each world. We again use a table over
possible worlds to show this. We first consider the case w > 0. According to
Algorithm 1c, P A @ A R is replaced by four new formulas: A A P, AAQ and
A N R each with weight w, and A with weight —2w. The left table below show
the contribution to the SWSF for (some of) the 16 possible worlds of A, P, @
and R. The right table shows the contribution after maxing-out A.

PQRA SWSF

EE:E 0 } maz = w P QR SWSF maxed-out

ttt w
r S men e diE
ffft 2w Lrf -
frff o Jmar=0

These tables should be read as follows. Consider the first row of the left table,
which is for the possible world in which P,), R and A are all true. The four
new formulas are all satisfied in this world, so their total contribution to the
SWSF is the sum of their weights, namely w + w 4+ w — 2w = w. For the other
worlds, the contribution can be computed similarly. If we max-out A, the table
over 16 possible worlds (left) collapses into one over 8 possible worlds (right).
For instance, the first two rows of the left table are both for the case where P,
@ and R are all true. Taking the maximum of their SWSF contributions, we
obtain maz(w,0) = w, which is the value in the first row of the right table. The
other entries of the maxed-out table (right) can be computed similarly. The end
result is that the SWSF contribution is w for the first world, and zero for all
other worlds.

The goal of the atomic rewriting step is to replace the formula P A Q A R.
The contribution of this formula is exactly the same as that in the maxed-out
table: w for the first world, and zero for the other worlds. This establishes max-
equivalence.

This is for w > 0; the reader can verify in the same way that max-equivalence
also holds if w < 0 (using the seven formulas of Algorithm 1c).

3.5 Beyond triplewise MLNs

The above shows how to reduce triplewise propositional MLNs to pairwise form.
When given a non-triplewise MLN (i.e., when the maximum formula length is

larger than 3), we apply a preprocessing step that converts the MLN to triplewise
form. This can be done using existing techniques: we first convert every non-
triplewise formula to clausal form [7], then we reduce each non-triplewise clause
to a set of triplewise formulas using the classic method with auxiliary atoms of
Karp [9]. For instance, consider the clausal formula PV—-QV RV =S, with weight
w. This can be converted to two triplewise formulas, namely a formula PV-QVT
with weight w, and a hard formula 7' < RV —S, with T an auxiliary atom.”
Note that this method can be used to bring any MLN into triplewise form, but
not to reduce it further to pairwise form. For this, our reduction algorithm is
needed.

4 Lifted Reduction for First-Order MLNs

So far, we only considered propositional MLNs. A first-order MLN is a set of
pairs (p;,w;) where each @; is a formula in first-order logic (we do not allow
existential quantifiers or functors).® The resulting probability distribution is:
P(w) = +exp(}"; wini(w)), with n;(w) the number of satisfied groundings of
formula ¢; in world w. We refer to logical variables as logvars and write them
in lowercase?, e.g., .

Reducing a first-order MLN can be done at the ground level or at the lifted
level. Reduction at the ground level simply consists of using existing methods
to ground the MLN and then carrying out the reduction as in the previous sec-
tion, treating each ground atom as a proposition (this requires using a separate
auxiliary proposition for each grounding of each triplewise formula). More in-
terestingly, we can also do the reduction at the first-order level, i.e., in a lifted
way.

Lifted reduction. This reduction is useful when performing lifted inference [8].
The approach is very similar to the propositional case, below we focus on the
differences.

Given a non-triplewise MLN, we apply a preprocessing step to make it triple-
wise, as in the propositional case. Concretely, we convert it to first-order clausal
form and then reduce non-triplewise clauses by introducing auxiliary variables
using Karp’s method on the first-order level [9]. For instance, consider the clausal
formula P(z) V Q(z,y) V R(y, z) V S(z), with weight w. We replace this by two
triplewise formulas, namely P(z) V Q(x,y) V T(y, z) with weight w, and a hard
formula T'(y, z) < R(y,z) V S(z), with T" an auxiliary predicate.

Once we have a triplewise MLN, the outline of the reduction algorithm is
the same as in the propositional case, although there are some differences in the
actual steps, see the colored comments in Algorithm 1. Step 1 is the same as
before, except for the complication of ‘lost logvars’, which we discuss later in
this section. Step 2 is also similar, the difference being that in the propositional

" A ‘hard’ formula in an MLN has infinite weight [7].

8 This is a common restriction in most of the work on Markov Logic.

9 This is the MLN (and first-order logic) convention, and is the opposite of the Prolog
convention.

10

case the introduced aux-atom is a proposition A, while in the lifted case it is an
atom containing the necessary logvars, as illustrated in the following example.

Example. Consider the first-order formula P(z) A Q(z,y) = R(y). This type of
formula is used often in SRL, for instance in collective classification: Class;(x) A
Link(x,y) = Class;(y). Note that this formula has exactly the same structure
(connectives) as our earlier propositional example P A Q = R. The reduction
is thus also very similar. In Step 1, we rewrite the formula to PNF, using Al-
gorithm 1b. This yields two formulas: P(z) A Q(z,y) A R(y) with weight w and
P(x) A Q(z,y) with weight —w. In Step 2, we reduce the first formula to pair-
wise form using Algorithm 1c, i.e., we replace it by four formulas: the pairwise
formulas A(x,y) A P(x), A(z,y) A Q(x,y), A(x,y) A R(y) each with weight w,
and the unary formula A(z, y) with weight —2w. The only actual difference with
the propositional example is that, as an aux-atom, we need to use A(z,y), with
A an auxiliary predicate. It is necessary that this atom contains all the logvars
that occur in the original triplewise formula, i.e., x and y in this case. This en-
sures that, if we ground the obtained pairwise MLN, it will contain a separate
aux-atom for every instantiation of (z,y), just as it would if we would have done
the reduction at the ground level. If we would not use a separate aux-atom for
each instantiation, the ground reductions would become inter-dependent and
max-equivalence would no longer hold. For this reason, it is also necessary to
use a separate aux-predicate for every first-order triplewise formula in the MLN.

Lifted versus ground reduction. The above lifted reduction is equivalent
to the reduction on the ground level in the sense that first reducing an MLN
on the lifted level and then grounding it will yield exactly the same result as
first grounding the MLN and then reducing it with our ground/propositional
reduction. This implies as a corollary that the max-equivalence that we had
for our propositional reduction carries over to the lifted level: when reducing a
first-order MLN to first-order pairwise form, the result will be max-equivalent,
provided that we max-out all instantiations of all aux-atoms.

Correction factors for lost logvars. Finally, there is one technical compli-
cation that we have not discussed yet. This complication occurs only in special
cases; it does for instance not occur in any of our previous examples, nor in
any of our experiments (Section 5). For completeness, we illustrate it on another
example. Consider the triplewise formula P(z) A Q(z) < R with weight w. If
we apply Step 1 (Algorithm 1b), we obtain, after some calculations, three PNF
formulas: P(z) A Q(x) A R with weight 2w, P(xz) A Q(z) with weight —w, and R
with weight —w. The problem is with the last formula (namely R): we have ‘lost’
the logvar x in the reduction (i.e., does not occur anymore in this formula).
This is incorrect. If we would do the reduction on the ground level, we would
separately rewrite every instantiation of the original formula to PNF, and we
would (correctly) get one occurrence of the formula R (with weight —w) for each
possible instantiation of x. Such duplicate occurrences are equivalent to a single
occurrence of R with weight —wN,, where N, is the domain size (number of
constants) of logvar x. However, in the above lifted reduction, we get only one
occurrence of R with weight —w. The solution is simple: we correct for the lost

11

logvar x in our lifted reduction by setting the weight of the formula R not to
—w but to —wN,, as it would be in the ground case.

In more general terms, whenever a formula in our lifted reduction has a lost
logvar, we need to compensate by multiplying the weight with the domain size
of the lost logvar. Note that lost logvars can arise in Step 1 (as in the above
example) or in Step 2. The solution with the correction factor applies to both
cases.

5 Experiments

To evaluate the usefulness of our reduction, we used it in experiments with
MAP inference. We used ground inference algorithms (with our propositional
reduction) as well as lifted algorithms (with our lifted reduction).

5.1 Ground inference: Setup

MLNs and datasets. We used two triplewise MLNs. The first is the MLN for
the Smokers domain [7]. On the first-order level, this contains one triplewise for-
mula, namely Friends(z,y) = (Smokes(z) < Smokes(y)), and several pairwise
or unary formulas. While this is a synthetic domain, it is of interest because its
formulas are similar to those in real-world MLNs (e.g., the above formula follows
the common pattern Link(x,y) = (Property(x) < Property(y))). We generated
ground MLNs for eight different domain sizes (number of people): 10, 20, 40, 60,
80, 100, 120 and 150 (beyond that, the experiments timed-out). For each domain
size, we defined MAP tasks by selecting the required number of people, sampling
the truth value for all ground atoms, and randomly selecting 80% of all resulting
ground atoms as evidence. The MAP task was to max-out the remaining 20% of
the atoms. We repeated this construction 20 times, yielding 20 different MAP
tasks per domain size, so 160 in total.

The second MLN is for WebKB (http://www.cs.cmu. edu/~webkb/), a data-
set about collective classification. On the first-order level, it contains 49 triple-
wise formulas of the form Class;(z) A Link(z,y) = Class;j(y) (with ¢ and j
one of 7 classes), and a number of pairwise and unary formulas. We varied the
domain size, by subsampling the set of webpages, from 10 to 70 in multiples of
10 (beyond that, the experiments timed-out). We learned the parameters of the
MLNs from data, using 4-fold cross validation over the different data-subsets.
We defined MAP tasks for each test fold by randomly selecting 80% of all ground
atoms in the data as evidence and maxing-out the other 20%. We constructed 5
different MAP tasks per fold, so 20 per domain size, so 140 in total.
Algorithms. We used two ground approximate MAP algorithms, MaxWalkSAT
(MWS) and MPLP. MWS [7] works in the same way irrespective of whether
the MLN is pairwise or not. MPLP [3] is a Max Product variant based on
Linear Programming. While the MPLP paper only discusses the pairwise case,
we obtained an implementation from the authors that supports also non-pairwise
models. We ran MPLP on the original triplewise MLNs (MPLP-t) as well as the

12

pairwise MLNs returned by our reduction algorithm (MPLP-p), with identical
settings. We also ran MWS on both types of MLNs (M WS-t and MWS-p). Since
MWS is an anytime algorithm, we had to choose the time-budget: for each MAP
task, we set the budget equal to the runtime of MPLP-p on that task.
Evaluation measure. We evaluated the quality of the MAP assignment re-
turned by an algorithm by computing the sum of weights of satisfied formulas in
the original triplewise MLN under this assignment, as this sum is proportional
to the probability of the MAP assignment, which we want to maximize [7].

5.2 Ground inference: Results

MLN characteristics. We recorded the characteristics of the triplewise MLNs
and their pairwise reductions. There is of course a certain blow up when doing
the reduction, e.g., the aux-atoms are introduced. How big this effect is depends
on the formulas involved, on the evidence, etc. On Smokers, the effect is very
small: the ratio of the number of ground atoms in the pairwise MLN versus in
the triplewise MLN is always in the interval [1.04,1.07]. On WebKB, the effect
is larger, with ratios in the interval [2.22,2.87]. The fact that these ratios are
larger than 2 means that, on WebKB, the majority of all atoms in the pairwise
MLNs are aux-atoms.

Algorithm comparison. When comparing the quality of the MAP solution
returned by the 4 methods, we found that MPLP-p is the best. On Smokers,
MPLP-p is the best method on 93% of all tasks, versus 62% for MPLP-t, 59%
for MWS-t, and 3% for MWS-p. These percentages sum up to more than 100%
because of ties: often multiple methods give the same MAP solution and are
jointly the best. On WebKB, MPLP-p is the best on 99% of all tasks, versus
82% for MPLP-t, and 15% for both MWS-t and MWS-p. Hence, overall MPLP-p
is the preferred method in terms of solution quality. However, in terms of time till
convergence, MPLP-p is significantly slower than MPLP-t: a factor 4.07 slower
on Smokers and a factor 1.62 slower on WebKB. This is because the pairwise
MLNs are larger than the triplewise ones. We now analyze closer the difference
between the triplewise and pairwise approaches.

MPLP-p vs MPLP-t. Figure 1 (top row) shows the wins/ties/losses for MPLP-
p versus MPLP-t. A win (green) means that MPLP-p, i.e. the pairwise approach,
is better; a loss (red) means that the triplewise approach is better. The pairwise
approach clearly gives the best results, especially on larger domains. It seems
that MPLP cannot deal well with many triplewise formulas, and the solution
quality suffers. This proves the usefulness of our reduction to pairwise form.
MWS-p vs MWS-t. Figure 1 (bottom row) shows the results for MWS. Here
the opposite trend holds: the triplewise approach gives the best results. Unlike
MPLP, MWS does local search to find the MAP optimum. For the pairwise
MLNs, the search space is significantly larger due to the extra aux-atoms. The
results show that MWS suffers from this enlarged search space and hence per-
forms poorly on the pairwise MLNs.

13

MPLP - Smokers MPLP - WebKB
20 T T 20 T T

i i
B B
e e
£ £
0 0 . .
10 20 40 60 8 100 120 150 10 20 30 40 S50 6 70
domain size domain size
MWS - Smokers MWS - WebKB
20 T T 20 T T
i i
Bl B
2]
= =
H H
o LLu . . o LLu
10 20 40 60 8 100 120 150 10 20 30 4 S0 6 70
domain size domain size

Fig. 1. (Best viewed in color.) Comparison of solution quality for pairwise versus triple-
wise MLNs. Each bar shows, for the corresponding domain size, how many of the 20
MAP tasks are ‘wins’ (green; pairwise is better), ‘losses’ (red; triplewise is better) and
‘ties’ (yellow).

5.3 Lifted inference: Setup

We also tested our reduction in combination with lifted inference. For this, we
used the lifted version of our reduction. As inference algorithm, we used MAP
via Lifted Linear Programming (using the sparse version of CVXOPT as the
underlying solver) [8]. We used the Smokers MLN with domain sizes 50, 100 and
150 (beyond that, some of the experiments timed-out).

5.4 Lifted inference: Results

Triplewise versus pairwise. Table 2 shows the results. Lifted Linear Pro-
gramming (LLP) performs approximate MAP inference. To indicate the quality
of the solution, it computes an upper bound on the MAP objective. Since the
MAP objective needs to be maximized, it holds that the lower the upper bound
is, the ‘tighter’ LLP’s approximation is. Hence, for the upper bound, lower is
better. As the last column of Table 2 shows, the results are slightly better for
pairwise MLNs than for the original triplewise MLNs. This shows that also in
the lifted case our reduction to pairwise form is useful.

Lifting. The measured speed-ups obtained due to lifting go up to a factor 1.53
for the triplewise MLNs and 1.27 for the pairwise MLNs. The fact that these
speed-ups are rather modest, might say more about the practical implementation
than about the theoretical potential for lifting: the reduction of the number of
variables (number of unknowns) in the LPs is very drastic, as Table 2 shows.
Hence, while the actual benefit of lifting in this experiment is modest, we see

14

Table 2. Lifted inference results. The 1st and 2nd column (MLN and domain size)
specify the input. The 3rd column (speed-up) gives the relative speed-up factor achieved
due to lifting. The 4th and 5th column (vars-ground and vars-lifted) give the number
of variables in the LP for respectively the ground and lifted case. The 6th column
(upper bound) gives the upper bound on the LP objective, lower is better (see text);
this bound is, by construction of LLP, identical for the ground and lifted case.

MLN Domain size Speed-up Vars-ground Vars-lifted Upper bound

50 1.22 25,200 19 7.83e03

Triplewise 100 1.39 100,400 19 3.12e04
150 1.53 225,600 19 7.00e04

50 1.07 60,400 24 7.77e03

Pairwise 100 1.22 240,800 24 3.10e04
150 1.27 541,200 24 6.96e04

this mainly as a proof-of-concept that our reduction can also be combined with
lifted inference.

6 Conclusion

We introduced Pairwise Markov Logic, a new subset of Markov Logic. This sub-
set is of special interest since working with pairwise MLNs has advantages in the
context of MAP/MPE inference. Our experiments with the MPLP algorithm
confirm this. Since allowing only pairwise MLNs is too restrictive during mod-
elling and learning, we have shown how to reduce a non-pairwise MLN to an
equivalent pairwise MLN for running inference, both on the ground level and
lifted. While we focussed on inference here, also learning will benefit from this
work, as MAP/MPE inference is a sub-procedure in many learning tasks (e.g.,
discriminative weight learning for MLNs [7]).

We presented some first experiments on combining our lifted reduction with
lifted inference. Further research in this direction is interesting future work.

Acknowledgements. We thank the reviewers for useful comments and sugges-
tions. DF is a post-doctoral fellow of the Research Foundation-Flanders (FWO-
Vlaanderen). KK was supported by the Fraunhofer ATTRACT fellowship
STREAM and by the EC (FP7-248258-First-MM). MM and KK were sup-
ported by the German Research Foundation DFG (KE 1686/2-1) within the
SPP 1527. JD is supported by the Research Fund K.U.Leuven (CREA/11/015
and OT/11/051), EU FP7 Marie Curie Career Integration Grant (#294068) and
FWO-Vlaanderen (G.0356.12).

References

1. Gallagher, A.C., Batra, D., Parikh, D.: Inference for order reduction in Markov
random fields. In: IEEE Computer Society Conference on Computer Vision and

15

Pattern Recognition, Los Alamitos, CA, USA, IEEE Computer Society (2011) 1857—
1864

. Kumar, M., Kolmogorov, V., Torr, P.: An analysis of convex relaxations for MAP
estimation of discrete MRFs. Journal of Machine Learning Research 10 (2009)
71-106

. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., Weiss, Y.: Tightening LP
relaxations for MAP using message passing. In: Proceedings of the 24th Annual
Conference on Uncertainty in Artificial Intelligence, Corvallis, Oregon, AUAI Press
(2008) 503-510

. Cour, T., Shi, J.: Solving Markov random fields with spectral relaxation. Journal
of Machine Learning Research - Proceedings Track 2 (2007) 75-82

. Rother, C., Kolmogorov, V., Lempitsky, V.S., Szummer, M.: Optimizing binary
MRFs via extended roof duality. In: IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition. (2007)

. Kolmogorov, V., Rother, C.: Minimizing nonsubmodular functions with graph cuts
- A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(7)
(2007) 1274-1279

. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov
Logic. Lecture Notes in Computer Science. In: Probabilistic Inductive Logic Pro-
gramming - Theory and Applications. Springer (2008)

. Mladenov, M., Ahmadi, B., Kersting, K.: Lifted linear programming. In: 15th In-
ternational Conference on Artificial Intelligence and Statistics, La Palma, Canary
Islands, Spain (2012) Volume 22 of Journal of Machine Learning Research: Work-
shop & Conference Proceedings 22.

. Karp, R.: Reducibility among combinatorial problems. In Complexity of Computer
Computations. Plenum Press (1972) 85-103

16

